Clean Hydrogen at Industrial Scale Requires Generation IV Nuclear

Source: · TERRESTRIAL ENERGY · | May 3, 2021 Updated

Source: Nuclear Reimagined, Third Way Think Tank/Gensler

Many see hydrogen as the golden key to our completely decarbonized and clean energy future. There are many compelling reasons that the golden key to unlock the door to a clean ethical and prosperous energy future is likely in the shape of “nuclear hydrogen.” According to a recent study by Energy Options Network (EON), nuclear innovation provides the most scalable and economical route to produce hydrogen at large industrial scale without producing harmful emissions and importantly that is cost-competitive.

Hydrogen has many industrial uses today and many more potentially in the future. Today it is used to upgrade crude oils, to make the materials in the products we use everyday, to make ammonia-based fertilizers. Ammonia is essential to our ability to grow the foods we need, so our lives depend on ammonia and by extension industrial hydrogen production.

In the future, hydrogen could replace coke for refining clean steels and other metals and bring steel production back to western markets that have responsible environmental standards. Hydrogen can be used to upgrade natural gas for residential heating in the same way that ethanol is used to upgrade gasoline. It can be used directly as a transport fuel or indirectly in the production of synthetic gasolines, diesels and kerosenes – all required for planes, trains, trucks, buses, ships and cars. It is obvious then that hydrogen is critical component of a clean, green and ethical industrial economy.

How do we produce that hydrogen?

Hydrogen production requires a lot of energy – a lot. The amount of energy we need for 1 Kg of hydrogen depends on how we produce it and the feedstock. As we look at each, remember that energy is money, so energy efficiency in hydrogen production is the same as cost efficiency. We can only create a hydrogen economy if hydrogen production is cost efficient, and that means energy efficient too.

Let’s first look at the feedstock for hydrogen production.

There are two plentiful sources of hydrogen in the world today: water (H2O); and, methane (CH4). Here is the first key obversation: It takes five to six times the amount of energy to remove hydrogen from water than from methane. Clearly if we can, we want to use methane as our source of hydrogen and not water… and we can!

There a number of methods, two are relevant – Steam Methane Reforming (StMR) and Pyrolysis (PyS). StMR is the dominant industrial method today, and PyS, of which there are numerous technologies is being demonstrated at commercial level today.

Previous
Previous

Alberta Catalyzer Starts 2022 with a New Name and First Cohort of Entrepreneurs

Next
Next

The Electric Fleet Power Play: Future Proofing and Building the Business Case